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The Cauchy Problem and Wave Equations

“Since a general solution must be judged impossible from want of analysis,
we must be content with the knowledge of some special cases, and that all
the more, since the development of various cases seems to be the only way
to bringing us at last to a more perfect knowledge.”

Leonhard Euler

“What would geometry be without Gauss, mathematical logic without
Boole, algebra without Hamilton, analysis without Cauchy?”

George Temple

5.1 The Cauchy Problem

In the theory of ordinary differential equations, by the initial-value problem
we mean the problem of finding the solutions of a given differential equation
with the appropriate number of initial conditions prescribed at an initial
point. For example, the second-order ordinary differential equation

d2u

dt2
= f

(
t, u,

du

dt

)

and the initial conditions

u (t0) = α,

(
du

dt

)
(t0) = β,

constitute an initial-value problem.
An analogous problem can be defined in the case of partial differential

equations. Here we shall state the problem involving second-order partial
differential equations in two independent variables.
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We consider a second-order partial differential equation for the function
u in the independent variables x and y, and suppose that this equation can
be solved explicitly for uyy, and hence, can be represented in the from

uyy = F (x, y, u, ux, uy, uxx, uxy) . (5.1.1)

For some value y = y0, we prescribe the initial values of the unknown
function and of the derivative with respect to y

u (x, y0) = f (x) , uy (x, y0) = g (x) . (5.1.2)

The problem of determining the solution of equation (5.1.1) satisfying
the initial conditions (5.1.2) is known as the initial-value problem. For in-
stance, the initial-value problem of a vibrating string is the problem of
finding the solution of the wave equation

utt = c2uxx,

satisfying the initial conditions

u (x, t0) = u0 (x) , ut (x, t0) = v0 (x) ,

where u0 (x) is the initial displacement and v0 (x) is the initial velocity.
In initial-value problems, the initial values usually refer to the data

assigned at y = y0. It is not essential that these values be given along
the line y = y0; they may very well be prescribed along some curve L0 in
the xy plane. In such a context, the problem is called the Cauchy problem
instead of the initial-value problem, although the two names are actually
synonymous.

We consider the Euler equation

Auxx + Buxy + Cuyy = F (x, y, u, ux, uy) , (5.1.3)

where A, B, C are functions of x and y. Let (x0, y0) denote points on a
smooth curve L0 in the xy plane. Also let the parametric equations of this
curve L0 be

x0 = x0 (λ) , y0 = y0 (λ) , (5.1.4)

where λ is a parameter.
We suppose that two functions f (λ) and g (λ) are prescribed along

the curve L0. The Cauchy problem is now one of determining the solution
u (x, y) of equation (5.1.3) in the neighborhood of the curve L0 satisfying
the Cauchy conditions

u = f (λ) , (5.1.5a)

∂u

∂n
= g (λ) , (5.1.5b)
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on the curve L0 where n is the direction of the normal to L0 which lies
to the left of L0 in the counterclockwise direction of increasing arc length.
The function f (λ) and g (λ) are called the Cauchy data.

For every point on L0, the value of u is specified by equation (5.1.5a).
Thus, the curve L0 represented by equation (5.1.4) with the condition
(5.1.5a) yields a twisted curve L in (x, y, u) space whose projection on
the xy plane is the curve L0. Thus, the solution of the Cauchy problem is a
surface, called an integral surface, in the (x, y, u) space passing through L
and satisfying the condition (5.1.5b), which represents a tangent plane to
the integral surface along L.

If the function f (λ) is differentiable, then along the curve L0, we have

du

dλ
=

∂u

∂x

dx

dλ
+

∂u

∂y

dy

dλ
=

df

dλ
, (5.1.6)

and

∂u

∂n
=

∂u

∂x

dx

dn
+

∂u

∂y

dy

dn
= g, (5.1.7)

but

dx

dn
= −dy

ds
and

dy

dn
=

dx

ds
. (5.1.8)

Equation (5.1.7) may be written as

∂u

∂n
= −∂u

∂x

dy

ds
+

∂u

∂y

dx

ds
= g. (5.1.9)

Since
∣∣∣∣∣∣

dx
dλ

dy
dλ

−dy
ds

dx
ds

∣∣∣∣∣∣
=

(dx)
2

+ (dy)
2

ds dλ
�= 0, (5.1.10)

it is possible to find ux and uy on L0 from the system of equations (5.1.6)
and (5.1.9). Since ux and uy are known on L0, we find the higher derivatives
by first differentiating ux and uy with respect to λ. Thus, we have

∂2u

∂x2

dx

dλ
+

∂2u

∂x ∂y

dy

dλ
=

d

dλ

(
∂u

∂x

)
, (5.1.11)

∂2u

∂x ∂y

dx

dλ
+

∂2u

∂y2

dy

dλ
=

d

dλ

(
∂u

∂y

)
. (5.1.12)

From equation (5.1.3), we have

A
∂2u

∂x2
+ B

∂2u

∂x ∂y
+ C

∂2u

∂y2
= F, (5.1.13)
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where F is known since ux and uy have been found. The system of equations
can be solved for uxx, uxy, and uyy, if

∣∣∣∣∣∣∣∣∣∣

dx
dλ

dy
dλ 0

0 dx
dλ

dy
dλ

A B C

∣∣∣∣∣∣∣∣∣∣

= C

(
dx

dλ

)2

− B

(
dx

dλ

)(
dy

dλ

)
+ A

(
dy

dλ

)2

�= 0. (5.1.14)

The equation

A

(
dy

dx

)2

− B

(
dy

dx

)
+ C = 0, (5.1.15)

is called the characteristic equation. It is then evident that the necessary
condition for obtaining the second derivatives is that the curve L0 must not
be a characteristic curve.

If the coefficients of equation (5.1.3) and the function (5.1.5) are ana-
lytic, then all the derivatives of higher orders can be computed by the above
process. The solution can then be represented in the form of a Taylor series:

u (x, y) =

∞∑

n=0

∞∑

k=0

1

k! (n − k)!

∂nu0

∂xk
0 ∂yn−k

0

(x − x0)
k
(y − y0)

n−k
, (5.1.16)

which can be shown to converge in the neighborhood of the curve L0. Thus,
we may state the famous Cauchy–Kowalewskaya theorem.

5.2 The Cauchy–Kowalewskaya Theorem

Let the partial differential equation be given in the form

uyy = F (y, x1, x2, . . . , xn, u, uy, ux1 , ux2 . . . , uxn ,

ux1y, ux2y, . . . , uxny, ux1x1 , ux2x2 , . . . , uxnxn) , (5.2.1)

and let the initial conditions

u = f (x1, x2, . . . , xn) , (5.2.2)

uy = g (x1, x2, . . . , xn) , (5.2.3)

be given on the noncharacteristic manifold y = y0.
If the function F is analytic in some neighborhood of the point(

y0, x0
1, x

0
2, . . . , x

0
n, u0, u0

y, . . .
)

and if the functions f and g are analytic in

some neighborhood of the point
(
x0

1, x
0
2, . . . , x

0
n

)
, then the Cauchy prob-

lem has a unique analytic solution in some neighborhood of the point(
y0, x0

1, x
0
2, . . . , x

0
n

)
.
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For the proof, see Petrovsky (1954).
The preceding statement seems equally applicable to hyperbolic, parabolic,

or elliptic equations. However, we shall see that difficulties arise in formulat-
ing the Cauchy problem for nonhyperbolic equations. Consider, for instance,
the famous Hadamard (1952) example.

The problem consists of the elliptic (or Laplace) equation

uxx + uyy = 0,

and the initial conditions on y = 0

u (x, 0) = 0, uy (x, 0) = n−1 sin nx.

The solution of this problem is

u (x, y) = n−2 sinh ny sin nx,

which can be easily verified.
It can be seen that, when n tends to infinity, the function n−1 sin nx

tends uniformly to zero. But the solution n−2 sinh ny sin nx does not be-
come small, as n increases for any nonzero y. Physically, the solution rep-
resents an oscillation with unbounded amplitude

(
n−2 sinhny

)
as y → ∞

for any fixed x. Even if n is a fixed number, this solution is unstable in the
sense that u → ∞ as y → ∞ for any fixed x for which sinnx �= 0. It is
obvious then that the solution does not depend continuously on the data.
Thus, it is not a properly posed problem.

In addition to existence and uniqueness, the question of continuous de-
pendence of the solution on the initial data arises in connection with the
Cauchy–Kowalewskaya theorem. It is well known that any continuous func-
tion can accurately be approximated by polynomials. We can apply the
Cauchy–Kowalewskaya theorem with continuous data by using polynomial
approximations only if a small variation in the initial data leads to a small
change in the solution.

5.3 Homogeneous Wave Equations

To study Cauchy problems for hyperbolic partial differential equations, it
is quite natural to begin investigating the simplest and yet most important
equation, the one-dimensional wave equation, by the method of characteris-
tics. The essential characteristic of the solution of the general wave equation
is preserved in this simplified case.

We shall consider the following Cauchy problem of an infinite string
with the initial condition
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utt − c2uxx = 0, x ∈ R, t > 0, (5.3.1)

u (x, 0) = f (x) , x ∈ R, (5.3.2)

ut (x, 0) = g (x) , x ∈ R. (5.3.3)

By the method of characteristics described in Chapter 4, the characteristic
equation according to equation (4.2.4) is

dx2 − c2dt2 = 0,

which reduces to

dx + c dt = 0, dx − c dt = 0.

The integrals are the straight lines

x + ct = c1, x − ct = c2.

Introducing the characteristic coordinates

ξ = x + ct, η = x − ct,

we obtain

uxx = uξξ + 2uξη + uηη, utt = c2 (uξξ − 2 uξη + uηη) .

Substitution of these in equation (5.3.1) yields

−4c2uξη = 0.

Since c �= 0, we have

uξη = 0.

Integrating with respect to ξ, we obtain

uη = ψ∗ (η) ,

where ψ∗ (η) is an arbitrary function of η. Integrating again with respect
to η, we obtain

u (ξ, η) =

∫
ψ∗ (η) dη + φ (ξ) .

If we set ψ (η) =
∫

ψ∗ (η) dη, we have

u (ξ, η) = φ (ξ) + ψ (η) ,

where φ and ψ are arbitrary functions. Transforming to the original vari-
ables x and t, we find the general solution of the wave equation
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u (x, t) = φ (x + ct) + ψ (x − ct) , (5.3.4)

provided φ and ψ are twice differentiable functions.
Now applying the initial conditions (5.3.2) and (5.3.3), we obtain

u (x, 0) = f (x) = φ (x) + ψ (x) , (5.3.5)

ut (x, 0) = g (x) = c φ′ (x) − c ψ′ (x) . (5.3.6)

Integration of equation (5.3.6) gives

φ (x) − ψ (x) =
1

c

∫ x

x0

g (τ) dτ + K, (5.3.7)

where x0 and K are arbitrary constants. Solving for φ and ψ from equations
(5.3.5) and (5.3.7), we obtain

φ (x) =
1

2
f (x) +

1

2c

∫ x

x0

g (τ) dτ +
K

2
,

ψ (x) =
1

2
f (x) − 1

2c

∫ x

x0

g (τ) dτ − K

2
.

The solution is thus given by

u (x, t) =
1

2
[f (x + ct) + f (x − ct)] +

1

2c

[∫ x+ct

x0

g (τ) dτ −
∫ x−ct

x0

g (τ) dτ

]

=
1

2
[f (x + ct) + f (x − ct)] +

1

2c

∫ x+ct

x−ct

g (τ) dτ. (5.3.8)

This is called the celebrated d’Alembert solution of the Cauchy problem for
the one-dimensional wave equation.

It is easy to verify by direct substitution that u (x, t), represented by
(5.3.8), is the unique solution of the wave equation (5.3.1) provided f (x)
is twice continuously differentiable and g (x) is continuously differentiable.
This essentially proves the existence of the d’Alembert solution. By direct
substitution, it can also be shown that the solution (5.3.8) is uniquely de-
termined by the initial conditions (5.3.2) and (5.3.3). It is important to note
that the solution u (x, t) depends only on the initial values of f at points
x − ct and x + ct and values of g between these two points. In other words,
the solution does not depend at all on initial values outside this interval,
x − ct ≤ x ≤ x + ct. This interval is called the domain of dependence of the
variables (x, t).

Moreover, the solution depends continuously on the initial data, that
is, the problem is well posed. In other words, a small change in either
f or g results in a correspondingly small change in the solution u (x, t).
Mathematically, this can be stated as follows:

For every ε > 0 and for each time interval 0 ≤ t ≤ t0, there exists a
number δ (ε, t0) such that
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|u (x, t) − u∗ (x, t)| < ε,

whenever

|f (x) − f∗ (x)| < δ, |g (x) − g∗ (x)| < δ.

The proof follows immediately from equation (5.3.8). We have

|u (x, t) − u∗ (x, t)| ≤ 1

2
|f (x + ct) − f∗ (x + ct)|

+
1

2
|f (x − ct) − f∗ (x − ct)|

+
1

2c

∫ x+ct

x−ct

|g (τ) − g∗ (τ)| dτ < ε,

where ε = δ (1 + t0).
For any finite time interval 0 < t < t0, a small change in the initial data

only produces a small change in the solution. This shows that the problem
is well posed.

Example 5.3.1. Find the solution of the initial-value problem

utt = c2uxx, x ∈ R, t > 0,

u (x, 0) = sin x, ut (x, 0) = cos x.

From (5.3.8), we have

u (x, t) =
1

2
[sin (x + ct) + sin (x − ct)] +

1

2c

∫ x+ct

x−ct

cos τ dτ

= sin x cos ct +
1

2c
[sin (x + ct) − sin (x − ct)]

= sin x cos ct +
1

c
cos x sin ct.

It follows from the d’Alembert solution that, if an initial displacement or
an initial velocity is located in a small neighborhood of some point (x0, t0),
it can influence only the area t > t0 bounded by two characteristics x−ct =
constant and x+ct = constant with slope ± (1/c) passing through the point
(x0, t0), as shown in Figure 5.3.1. This means that the initial displacement
propagates with the speed dx

dt = c, whereas the effect of the initial velocity
propagates at all speeds up to c. This infinite sector R in this figure is called
the range of influence of the point (x0, t0).

According to (5.3.8), the value of u (x0, t0) depends on the initial data f
and g in the interval [x0 − ct0, x0 + ct0] which is cut out of the initial line
by the two characteristics x−ct = constant and x+ct = constant with slope
± (1/c) passing through the point (x0, t0). The interval [x0 − ct0, x0 + ct0]
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Figure 5.3.1 Range of influence

on the line t = 0 is called the domain of dependence of the solution at the
point (x0, t0), as shown in Figure 5.3.2.

Figure 5.3.2 Domain of dependence
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Since the solution u (x, t) at every point (x, t) inside the triangular region
D in this figure is completely determined by the Cauchy data on the interval
[x0 − ct0, x0 + ct0], the region D is called the region of determinancy of the
solution.

We will now investigate the physical significance of the d’Alembert so-
lution (5.3.8) in greater detail. We rewrite the solution in the form

u (x, t) =
1

2
f (x + ct) +

1

2c

∫ x+ct

0

g (τ) dτ +
1

2
f (x − ct) − 1

2c

∫ x−ct

0

g (τ) dτ.

(5.3.9)

Or, equivalently,

u (x, t) = φ (x + ct) + ψ (x − ct) , (5.3.10)

where

φ (ξ) =
1

2
f (ξ) +

1

2c

∫ ξ

0

g (τ) dτ, (5.3.11)

ψ (η) =
1

2
f (η) − 1

2c

∫ η

0

g (τ) dτ. (5.3.12)

Evidently, φ (x + ct) represents a progressive wave traveling in the negative
x-direction with speed c without change of shape. Similarly, ψ (x − ct) is
also a progressive wave propagating in the positive x-direction with the
same speed c without change of shape. We shall examine this point in
greater detail. Treat ψ (x − ct) as a function of x for a sequence of times
t. At t = 0, the shape of this function of u = ψ (x). At a subsequent time,
its shape is given by u = ψ (x − ct) or u = ψ (ξ), where ξ = x − ct is
the new coordinate obtained by translating the origin a distance ct to the
right. Thus, the shape of the curve remains the same as time progresses,
but moves to the right with velocity c as shown in Figure 5.3.3. This shows
that ψ (x − ct) represents a progressive wave traveling in the positive x-
direction with velocity c without change of shape. Similarly, φ (x + ct) is
also a progressive wave propagating in the negative x-direction with the
same speed c without change of shape. For instance,

u (x, t) = sin (x+ ct) (5.3.13)

represent sinusoidal waves traveling with speed c in the positive and neg-
ative directions respectively without change of shape. The propagation of
waves without change of shape is common to all linear wave equations.

To interpret the d’Alembert formula we consider two cases:
Case 1. We first consider the case when the initial velocity is zero, that

is,

g (x) = 0.
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Figure 5.3.3 Progressive Waves.

Then, the d’Alembert solution has the form

u (x, t) =
1

2
[f (x + ct) + f (x − ct)] .

Now suppose that the initial displacement f (x) is different from zero in an
interval (−b, b). Then, in this case the forward and the backward waves are
represented by

u =
1

2
f (x) .

The waves are initially superimposed, and then they separate and travel in
opposite directions.

We consider f (x) which has the form of a triangle. We draw a triangle
with the ordinate x = 0 one-half that of the given function at that point,
as shown in Figure 5.3.4. If we displace these graphs and then take the sum
of the ordinates of the displaced graphs, we obtain the shape of the string
at any time t.

As can be seen from the figure, the waves travel in opposite directions
away from each other. After both waves have passed the region of initial
disturbance, the string returns to its rest position.

Case 2. We consider the case when the initial displacement is zero, that
is,

f (x) = 0,
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Figure 5.3.4 Triangular Waves.

and the d’Alembert solution assumes the form

u (x, t) =
1

2

∫ x+ct

x−ct

g (τ) dτ =
1

2
[G (x + ct) − G (x − ct)] ,

where

G (x) =
1

c

∫ x

x0

g (τ) dτ.

If we take for the initial velocity

g (x) =

⎧
⎨
⎩

0 |x| > b

g0 |x| ≤ b,

then, the function G (x) is equal to zero for values of x in the interval
x ≤ −b, and

G (x) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
c

∫ x

−b

g0 dτ = g0

c (x + b) for −b ≤ x ≤ b,

1
c

∫ x

−b

g0 dτ = 2bg0

c for x > b.
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Figure 5.3.5 Graph of u (x, t) at time t.

As in the previous case, the two waves which differ in sign travel in opposite
directions on the x-axis. After some time t the two functions (1/2) G (x)
and − (1/2) G (x) move a distance ct. Thus, the graph of u at time t is
obtained by summing the ordinates of the displaced graphs as shown in
Figure 5.3.5. As t approaches infinity, the string will reach a state of rest,
but it will not, in general, assume its original position. This displacement
is known as the residual displacement.

In the preceding examples, we note that f (x) is continuous, but not
continuously differentiable and g (x) is discontinuous. To these initial data,
there corresponds a generalized solution. By a generalized solution we mean
the following:

Let us suppose that the function u (x, t) satisfies the initial conditions
(5.3.2) and (5.3.3). Let u (x, t) be the limit of a uniformly convergent se-
quence of solutions un (x, t) which satisfy the wave equation (5.3.1) and the
initial conditions

un (x, 0) = fn (x) ,

(
∂un

∂t

)
(x, 0) = gn (x) .

Let fn (x) be a continuously differentiable function, and let the sequence
converge uniformly to f (x); let gn (x) be a continuously differentiable func-
tion, and

∫ x

x0
gn (τ) dτ approach uniformly to

∫ x

x0
g (τ) dτ . Then, the func-

tion u (x, t) is called the generalized solution of the problem (5.3.1)–(5.3.3).
In general, it is interesting to discuss the effect of discontinuity of the

function f (x) at a point x = x0, assuming that g (x) is a smooth function.
Clearly, it follows from (5.3.8) that u (x, t) will be discontinuous at each
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point (x, t) such that x+ct = x0 or x−ct = x0, that is, at each point of the
two characteristic lines intersecting at the point (x0, 0). This means that
discontinuities are propagated along the characteristic lines. At each point
of the characteristic lines, the partial derivatives of the function u (x, t) fail
to exist, and hence, u can no longer be a solution of the Cauchy problem
in the usual sense. However, such a function may be called a generalized
solution of the Cauchy problem. Similarly, if f (x) is continuous, but either
f ′ (x) or f ′′ (x) has a discontinuity at some point x = x0, the first- or
second-order partial derivatives of the solution u (x, t) will be discontinuous
along the characteristic lines through (x0, 0). Finally, a discontinuity in
g (x) at x = x0 would lead to a discontinuity in the first- or second-order
partial derivatives of u along the characteristic lines through (x0, 0), and a
discontinuity in g′ (x) at x0 will imply a discontinuity in the second-order
partial derivatives of u along the characteristic lines through (x0, 0). The
solution given by (5.3.8) with f , f ′, f ′′, g, and g′ piecewise continuous on
−∞ < x < ∞ is usually called the generalized solution of the Cauchy
problem.

5.4 Initial Boundary-Value Problems

We have just determined the solution of the initial-value problem for the
infinite vibrating string. We will now study the effect of a boundary on the
solution.

(A) Semi-infinite String with a Fixed End
Let us first consider a semi-infinite vibrating string with a fixed end,

that is,

utt = c2uxx, 0 < x < ∞, t > 0,

u (x, 0) = f (x) , 0 ≤ x < ∞, (5.4.1)

ut (x, 0) = g (x) , 0 ≤ x < ∞,

u (0, t) = 0, 0 ≤ t < ∞.

It is evident here that the boundary condition at x = 0 produces a wave
moving to the right with the velocity c. Thus, for x > ct, the solution is
the same as that of the infinite string, and the displacement is influenced
only by the initial data on the interval [x − ct, x + ct], as shown in Figure
5.4.1.

When x < ct, the interval [x − ct, x + ct] extends onto the negative
x-axis where f and g are not prescribed.

But from the d’Alembert formula

u (x, t) = φ (x + ct) + ψ (x − ct) , (5.4.2)

where
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Figure 5.4.1 Displacement influenced by the initial data on [x − ct, x + ct].

φ (ξ) =
1

2
f (ξ) +

1

2c

∫ ξ

0

g (τ) dτ +
K

2
, (5.4.3)

ψ (η) =
1

2
f (η) − 1

2c

∫ η

0

g (τ) dτ − K

2
, (5.4.4)

we see that

u (0, t) = φ (ct) + ψ (−ct) = 0.

Hence,

ψ (−ct) = −φ (ct) .

If we let α = −ct, then

ψ (α) = −φ (−α) .

Replacing α by x − ct, we obtain for x < ct,

ψ (x − ct) = −φ (ct − x) ,

and hence,

ψ (x − ct) = −1

2
f (ct − x) − 1

2c

∫ ct−x

0

g (τ) dτ − K

2
.

The solution of the initial boundary-value problem, therefore, is given by
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u (x, t) =
1

2
[f (x + ct) + f (x − ct)] +

1

2c

∫ x+ct

x−ct

g (τ) dτ for x > ct, (5.4.5)

u (x, t) =
1

2
[f (x + ct) − f (ct − x)] +

1

2c

∫ x+ct

ct−x

g (τ) dτ for x < ct. (5.4.6)

In order for this solution to exist, f must be twice continuously differ-
entiable and g must be continuously differentiable, and in addition

f (0) = f ′′ (0) = g (0) = 0.

Solution (5.4.6) has an interesting physical interpretation. If we draw
the characteristics through the point (x0, t0) in the region x > ct, we see,
as pointed out earlier, that the displacement at (x0, t0) is determined by
the initial values on [x0 − ct0, x0 + ct0].

If the point (x0, t0) lies in the region x > ct as shown in Figure 5.4.1,
we see that the characteristic x + ct = x0 + ct0 intersects the x-axis at
(x0 + ct0, 0). However, the characteristic x − ct = x0 − ct0 intersects the
t-axis at (0, t0 − x0/c), and the characteristic x + ct = ct0 − x0 intersects
the x-axis at (ct0 − x0, 0). Thus, the disturbance at (ct0 − x0, 0) travels
along the backward characteristic x + ct = ct0 − x0, and is reflected at
(0, t0 − x0/c) as a forward moving wave represented by −φ (ct0 − x0).

Example 5.4.1. Determine the solution of the initial boundary-value prob-
lem

utt = 4uxx, x > 0, t > 0,

u (x, 0) = |sin x| , x > 0,

ut (x, 0) = 0, x ≥ 0,

u (x, 0) = 0, t ≥ 0.

For x > 2t,

u (x, t) =
1

2
[f (x + 2t) + f (x − 2t)]

=
1

2
[|sin (x + 2t)| − |sin (x − 2t)|] ,

and for x < 2t,

u (x, t) =
1

2
[f (x + 2t) − f (2t − x)]

=
1

2
[|sin (x + 2t)| − |sin (2t − x)|] .

Notice that u (0, t) = 0 is satisfied by u (x, t) for x < 2t (that is, t > 0).



5.4 Initial Boundary-Value Problems 133

(B) Semi-infinite String with a Free End
We consider a semi-infinite string with a free end at x = 0. We will

determine the solution of

utt = c2uxx, 0 < x < ∞, t > 0,

u (x, 0) = f (x) , 0 ≤ x < ∞, (5.4.7)

ut (x, 0) = g (x) , 0 ≤ x < ∞,

ux (0, t) = 0, 0 ≤ t < ∞.

As in the case of the fixed end, for x > ct the solution is the same as
that of the infinite string. For x < ct, from the d’Alembert solution (5.4.2)

u (x, t) = φ (x + ct) + ψ (x − ct) ,

we have

ux (x, t) = φ′ (x + ct) + ψ′ (x − ct) .

Thus,

ux (0, t) = φ′ (ct) + ψ′ (−ct) = 0.

Integration yields

φ (ct) − ψ (−ct) = K,

where K is a constant. Now, if we let α = −ct, we obtain

ψ (α) = φ (−α) − K.

Replacing α by x − ct, we have

ψ (x − ct) = φ (ct − x) − K,

and hence,

ψ (x − ct) =
1

2
f (ct − x) +

1

2c

∫ ct−x

0

g (τ) dτ − K

2
.

The solution of the initial boundary-value problem, therefore, is given by

u (x, t) =
1

2
[f (x + ct) + f (x − ct)] +

1

2c

∫ x+ct

x−ct

g (τ) dτ for x > ct. (5.4.8)

u (x, t) =
1

2
[f (x + ct) + f (ct − x)] +

1

2c

[∫ x+ct

0

g (τ) dτ +

∫ ct−x

0

g (τ) dτ

]

for x < ct. (5.4.9)

We note that for this solution to exist, f must be twice continuously
differentiable and g must be continuously differentiable, and in addition,

f ′ (0) = g′ (0) = 0.
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Example 5.4.2. Find the solution of the initial boundary-value problem

utt = uxx, 0 < x < ∞, t > 0,

u (x, 0) = cos
(πx

2

)
, 0 ≤ x < ∞,

ut (x, 0) = 0, 0 ≤ x < ∞,

ux (x, 0) = 0, t ≥ 0.

For x > t

u (x, t) =
1

2

[
cos

π

2
(x + t) + cos

π

2
(x − t)

]

= cos
(π

2
x
)

cos
(π

2
t
)

,

and for x < t

u (x, t) =
1

2

[
cos

π

2
(x + t) + cos

π

2
(t − x)

]

= cos
(π

2
x
)

cos
(π

2
t
)

.

5.5 Equations with Nonhomogeneous Boundary

Conditions

In the case of the initial boundary-value problems with nonhomogeneous
boundary conditions, such as

utt = c2uxx, x > 0, t > 0,

u (x, 0) = f (x) , x ≥ 0, (5.5.1)

ut (x, 0) = g (x) , x ≥ 0,

u (0, t) = p (t) , t ≥ 0,

we proceed in a manner similar to the case of homogeneous boundary con-
ditions. Using equation (5.4.2), we apply the boundary condition to obtain

u (0, t) = φ (ct) + ψ (−ct) = p (t) .

If we let α = −ct, we have

ψ (α) = p
(
−α

c

)
− φ (−α) .

Replacing α by x − ct, the preceding relation becomes

ψ (x − ct) = p
(
t − x

c

)
− φ (ct − x) .

shekhaR
Text Box
Solve this example
and at least one exercise based on this example

shekhaR
Text Box
Nonhomogeneous Boundary condition means u(0,t) is non-zero

shekhaR
Highlight

shekhaR
Typewritten Text
This only for x<ct and for x>ct have the

shekhaR
Typewritten Text
similar solution as infinite string



5.5 Equations with Nonhomogeneous Boundary Conditions 135

Thus, for 0 ≤ x < ct,

u (x, t) = p
(
t − x

c

)
+

1

2
[f (x + ct) − f (ct − x)] +

1

2c

∫ x+ct

ct−x

g (τ) dτ

= p
(
t − x

c

)
+ φ (x + ct) − ψ (ct − x) , (5.5.2)

where φ (x + ct = ξ) is given by (5.3.11), and ψ (η) is given by

ψ (η) =
1

2
f (η) +

1

2c

∫ η

0

g (τ) dτ. (5.5.3)

The solution for x > ct is given by the solution (5.4.5) of the infinite string.
In this case, in addition to the differentiability conditions satisfied by

f and g, as in the case of the problem with the homogeneous boundary
conditions, p must be twice continuously differentiable in t and

p (0) = f (0) , p′ (0) = g (0) , p′′ (0) = c2f ′′ (0) .

We next consider the initial boundary-value problem

utt = c2uxx, x > 0, t > 0,

u (x, 0) = f (x) , x ≥ 0,

ut (x, 0) = g (x) , x ≥ 0,

ux (0, t) = q (t) , t ≥ 0.

Using (5.4.2), we apply the boundary condition to obtain

ux (0, t) = φ′ (ct) + ψ′ (−ct) = q (t) .

Then, integrating yields

φ (ct) − ψ (−ct) = c

∫ t

0

q (τ) dτ + K.

If we let α = −ct, then

ψ (α) = φ (−α) − c

∫ −α/c

0

q (τ) dτ − K.

Replacing α by x − ct, we obtain

ψ (x − ct) = φ (ct − x) − c

∫ t−x/c

0

q (τ) dτ − K.

The solution of the initial boundary-value problem for x < ct, therefore, is
given by
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u (x, t) =
1

2
[f (x + ct) + f (ct − x)] +

1

2c

[∫ x+ct

0

g (τ) dτ +

∫ ct−x

0

g (τ) dτ

]

−c

∫ t−x/c

0

q (τ) dτ. (5.5.4)

Here f and g must satisfy the differentiability conditions, as in the case of
the problem with the homogeneous boundary conditions. In addition

f ′ (0) = q (0) , g′ (0) = q′ (0) .

The solution for the initial boundary-value problem involving the bound-
ary condition

ux (0, t) + hu (0, t) = 0, h = constant

can also be constructed in a similar manner from the d’Alembert solution.

5.6 Vibration of Finite String with Fixed Ends

The problem of the finite string is more complicated than that of the infinite
string due to the repeated reflection of waves from the boundaries

We first consider the vibration of the string of length l fixed at both
ends. The problem is that of finding the solution of

utt = c2uxx, 0 < x < l, t > 0,

u (x, 0) = f (x) , 0 ≤ x ≤ l,

ut (x, 0) = g (x) , 0 ≤ x ≤ l, (5.6.1)

u (0, t) = 0, u (l, t) = 0, t ≥ 0,

From the previous results, we know that the solution of the wave equa-
tion is

u (x, t) = φ (x + ct) + ψ (x − ct) .

Applying the initial conditions, we have

u (x, 0) = φ (x) + ψ (x) = f (x) , 0 ≤ x ≤ l,

ut (x, 0) = c φ′ (x) − c ψ′ (x) = g (x) , 0 ≤ x ≤ l.

Solving for φ and ψ, we find

φ (ξ) =
1

2
f (ξ) +

1

2c

∫ ξ

0

g (τ) dτ +
K

2
, 0 ≤ ξ ≤ l, (5.6.2)

ψ (η) =
1

2
f (η) − 1

2c

∫ η

0

g (τ) dτ − K

2
, 0 ≤ η ≤ l. (5.6.3)
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Hence,

u (x, t) =
1

2
[f (x + ct) + f (x − ct)] +

1

2c

∫ x+ct

x−ct

g (τ) dτ, (5.6.4)

for 0 ≤ x + ct ≤ l and 0 ≤ x − ct ≤ l. The solution is thus uniquely
determined by the initial data in the region

t ≤ x

c
, t ≤ l − x

c
, t ≥ 0.

For larger times, the solution depends on the boundary conditions. Applying
the boundary conditions, we obtain

u (0, t) = φ (ct) + ψ (−ct) = 0, t ≥ 0, (5.6.5)

u (l, t) = φ (l + ct) + ψ (l − ct) = 0, t ≥ 0. (5.6.6)

If we set α = −ct, equation (5.6.5) becomes

ψ (α) = −φ (−α) , α ≤ 0, (5.6.7)

and if we set α = l + ct, equation (5.6.6) takes the form

φ (α) = −ψ (2l − α) , α ≥ l. (5.6.8)

With ξ = −η, we may write equation (5.6.2) as

φ (−η) =
1

2
f (−η) +

1

2c

∫ −η

0

g (τ) dτ +
K

2
, 0 ≤ −η ≤ l. (5.6.9)

Thus, from (5.6.7) and (5.6.9), we have

ψ (η) = −1

2
f (−η) − 1

2c

∫ −η

0

g (τ) dτ − K

2
, −l ≤ η ≤ 0. (5.6.10)

We see that the range of ψ (η) is extended to −l ≤ η ≤ l.

If we put α = ξ in equation (5.6.8), we obtain

φ (ξ) = −ψ (2l − ξ) , ξ ≥ l. (5.6.11)

Then, by putting η = 2l − ξ in equation (5.6.3), we obtain

ψ (2l − ξ) =
1

2
f (2l − ξ) − 1

2c

∫ 2l−ξ

0

g (τ) dτ − K

2
, 0 ≤ 2l − ξ ≤ l.

(5.6.12)

Substitution of this in equation (5.6.11) yields
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φ (ξ) = −1

2
f (2l − ξ) +

1

2c

∫ 2l−ξ

0

g (τ) dτ +
K

2
, l ≤ ξ ≤ 2l. (5.6.13)

The range of φ (ξ) is thus extended to 0 ≤ ξ ≤ 2l. Continuing in this
manner, we obtain φ (ξ) for all ξ ≥ 0 and ψ (η) for all η ≤ l. Hence, the
solution is determined for all 0 ≤ x ≤ l and t ≥ 0.

In order to observe the effect of the boundaries on the propagation of
waves, the characteristics are drawn through the end point until they meet
the boundaries and then continue inward as shown in Figure 5.6.1. It can be
seen from the figure that only direct waves propagate in region 1. In regions
2 and 3, both direct and reflected waves propagate. In regions, 4,5,6, ... ,
several waves propagate along the characteristics reflected from both of the
boundaries x = 0 and x = l.

Example 5.6.1. Determine the solution of the following problem

utt = c2uxx, 0 < x < l, t > 0,

u (x, 0) = sin (πx/l) , 0 ≤ x ≤ l,

ut (x, 0) = 0, 0 ≤ x ≤ l,

u (0, t) = 0, u (l, t) = 0, t ≥ 0.

From equations (5.6.2) and (5.6.3), we have

Figure 5.6.1 Regions of wave propagation.
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φ (ξ) =
1

2
sin

(
πξ

l

)
+

K

2
, 0 ≤ ξ ≤ l.

ψ (η) =
1

2
sin

(πη

l

)
− K

2
, 0 ≤ η ≤ l.

Using equation (5.6.10), we obtain

ψ (η) = −1

2
sin

(
−πη

l

)
− K

2
, −l ≤ η ≤ 0

=
1

2
sin

(πη

l

)
− K

2
.

From equation (5.6.13), we find

φ (ξ) = −1

2
sin

{π

l
(2l − ξ)

}
+

K

2
, l ≤ ξ ≤ 2l.

Again by equation (5.6.7) and from the preceding φ (ξ), we have

φ (η) =
1

2
sin

(πη

l

)
− K

2
, −2l ≤ η ≤ −l.

Proceeding in this manner, we determine the solution

u (x, t) = φ (ξ) + ψ (η)

=
1

2

[
sin

π

l
(x + ct) + sin

π

l
(x − ct)

]

for all x in (0, l) and for all t > 0.
Similarly, the solution of the finite initial boundary-value problem

utt = c2uxx, 0 < x < l, t > 0,

u (x, 0) = f (x) , 0 ≤ x ≤ l,

ut (x, 0) = g (x) , 0 ≤ x ≤ l,

u (0, t) = p (t) , u (l, t) = q (t) , t ≥ 0,

can be determined by the same method.

5.7 Nonhomogeneous Wave Equations

We shall consider next the Cauchy problem for the nonhomogeneous wave
equation

utt = c2uxx + h∗ (x, t) , (5.7.1)

with the initial conditions

u (x, 0) = f (x) , ut (x, 0) = g∗ (x) . (5.7.2)
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By the coordinate transformation

y = ct, (5.7.3)

the problem is reduced to

uxx − uyy = h (x, y) , (5.7.4)

u (x, 0) = f (x) , (5.7.5)

uy (x, 0) = g (x) , (5.7.6)

where h (x, y) = −h∗/c2 and g (x) = g∗/c.

Let P0 (x0, y0) be a point of the plane, and let Q0 be the point (x0, 0)
on the initial line y = 0. Then the characteristics, x+ y = constant, of
equation (5.7.4) are two straight lines drawn through the point P0 with
slopes + 1. Obviously, they intersect the x-axis at the points P1 (x0 − y0, 0)
and P2 (x0 + y0, 0), as shown in Figure 5.7.1. Let the sides of the triangle
P0P1P2 be designated by B0, B1, and B2, and let D be the region repre-
senting the interior of the triangle and its boundaries B. Integrating both
sides of equation (5.7.4), we obtain

∫∫

R

(uxx − uyy) dR =

∫∫

R

h (x, y) dR. (5.7.7)

Now we apply Green’s theorem to obtain

Figure 5.7.1 Triangular Region.
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∫∫

R

(uxx − uyy) dR =

∮

B

(uxdy + uydx) . (5.7.8)

Since B is composed of B0, B1, and B2, we note that

∫

B0

(ux dy + uy dx) =

∫ x0+y0

x0−y0

uy dx,

∫

B1

(ux dy + uy dx) =

∫

B1

(−ux dx − uy dy) ,

= u (x0 + y0, 0) − u (x0, y0) ,∫

B2

(ux dy + uy dx) =

∫

B2

(ux dx + uy dy) ,

= u (x0 − y0, 0) − u (x0, y0) .

Hence,

∮

B

(ux dy + uy dx) = −2 u (x0, y0) + u (x0 − y0, 0)

+u (x0 + y0, 0) +

∫ x0+y0

x0−y0

uy dx. (5.7.9)

Combining equations (5.7.7), (5.7.8) and (5.7.9), we obtain

u (x0, y0) =
1

2
[u (x0 + y0, 0) + u (x0 − y0, 0)]

+
1

2

∫ x0+y0

x0−y0

uy dx − 1

2

∫∫

R

h (x, y) dR. (5.7.10)

We have chosen x0, y0 arbitrarily, and as a consequence, we replace x0 by
x and y0 by y. Equation (5.7.10) thus becomes

u (x, y) =
1

2
[f (x + y) + f (x − y)] +

1

2

∫ x+y

x−y

g (τ) dτ − 1

2

∫∫

R

h (x, y) dR.

In terms of the original variables

u (x, t) =
1

2
[f (x + ct) + f (x − ct)] +

1

2c

∫ x+ct

x−ct

g∗ (τ) dτ − 1

2

∫∫

R

h (x, t) dR.

(5.7.11)

Example 5.7.1. Determine the solution of

uxx − uyy = 1,

u (x, 0) = sinx,

uy (x, 0) = x.
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Figure 5.7.2 Triangular Region.

It is easy to see that the characteristics are x+ y = constant = x0 + y0 and
x − y = constant = x0 − y0, as shown in Figure 5.7.2. Thus,

u (x0, y0) =
1

2
[sin (x0 + y0) + sin (x0 − y0)]

+
1

2

∫ x0+y0

x0−y0

τ dτ − 1

2

∫ y0

0

∫ −y+x0+y0

y+x0−y0

dx dy

=
1

2
[sin (x0 + y0) + sin (x0 − y0)] + x0y0 − 1

2
y2
0 .

Now dropping the subscript zero, we obtain the solution

u (x, y) =
1

2
[sin (x + y) + sin (x − y)] + xy − 1

2
y2.

5.8 The Riemann Method

We shall discuss Riemann’s method of integrating the linear hyperbolic
equation

L [u] ≡ uxy + aux + buy + cu = f (x, y) , (5.8.1)
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where L denotes the linear operator, and a (x, y), b (x, y), c (x, y), and
f (x, y) are differentiable functions in some domain D∗. The method con-
sists essentially of the derivation of an integral formula which represents
the solution of the Cauchy problem.

Let v (x, y) be a function having continuous second-order partial deriva-
tives. Then, we may write

vuxy − uvxy = (vux)y − (vuy)x ,

vaux = (avu)x − u (av)x , (5.8.2)

vbuy = (bvu)y − u (bv)y ,

so that

vL [u] − uM [v] = Ux + Vy, (5.8.3)

where M is the operator represented by

M [v] = vxy − (av)x − (bv)y + cv, (5.8.4)

and

U = auv − uvy, V = buv + vux. (5.8.5)

The operator M is called the adjoint operator of L. If M = L, then the
operator L is said to be self-adjoint. Now applying Green’s theorem, we
have

∫∫

D

(Ux + Vy) dx dy =

∮

C

(U dy − V dx) , (5.8.6)

where C is the closed curve bounding the region of integration D which is
in D∗.

Let Λ be a smooth initial curve which is continuous, as shown in Figure
5.8.1. Since equation (5.8.1) is in first canonical form, x and y are the
characteristic coordinates. We assume that the tangent to Λ is nowhere
parallel to the x or y axis. Let P (α, β) be a point at which the solution to
the Cauchy problem is sought. Line PQ parallel to the x axis intersects the
initial curve Λ at Q, and line PR parallel to the y axis intersects the curve
Λ at R. We suppose that u and ux or uy are prescribed along Λ.

Let C be the closed contour PQRP bounding D. Since dy = 0 on PQ
and dx = 0 on PR, it follows immediately from equations (5.8.3) and (5.8.6)
that

∫∫

D

(vL [u] − uM [v]) dx dy =

∫ R

Q

(U dy − V dx) +

∫ P

R

U dy −
∫ Q

P

V dx.

(5.8.7)
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Figure 5.8.1 Smooth initial curve.

From equation (5.8.5), we find

∫ Q

P

V dx =

∫ Q

P

bvu dx +

∫ Q

P

vux dx.

Integrating by parts, we obtain

∫ Q

P

vuxdx = [uv]
Q
P −

∫ Q

P

uvxdx.

Hence, we may write

∫ Q

P

V dx = [uv]
Q
P +

∫ Q

P

u (bv − vx) dx.

Substitution of this integral in equation (5.8.7) yields

[uv]P = [uv]Q +

∫ Q

P

u (bv − vx) dx −
∫ P

R

u (av − vy) dy −
∫ R

Q

(U dy − V dx)

+

∫∫

D

(vL [u] − uM [v]) dx dy. (5.8.8)

Suppose we can choose the function v (x, y; α, β) to be the solution of
the adjoint equation
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M [v] = 0, (5.8.9)

satisfying the conditions

vx = bv when y = β,

vy = av when x = α, (5.8.10)

v = 1 when x = α and y = β.

The function v (x, y; α, β) is called the Riemann function. Since L [u] = f ,
equation (5.8.8) reduces to,

[u]P = [uv]Q −
∫ R

Q

uv (a dy − b dx) +

∫ R

Q

(uvydy + vuxdx) +

∫∫

D

vf dx dy.

(5.8.11)

This gives us the value of u at the point P when u and ux are prescribed
along the curve Λ. When u and uy are prescribed, the identity

[uv]R − [uv]Q =

∫ R

Q

{
(uv)x dx + (uv)y dy

}
,

may be used to put equation (5.8.8) in the form

[u]P = [uv]R −
∫ R

Q

uv (a dy − b dx) −
∫ R

Q

(uvxdx + vuydy)

+

∫∫

D

vf dx dy. (5.8.12)

By adding equations (5.8.11) and (5.8.12), the value of u at P is given by

[u]P =
1

2

(
[uv]Q + [uv]R

)
−

∫ R

Q

uv (a dy − b dx) − 1

2

∫ R

Q

u (vxdx − vydy)

+
1

2

∫ R

Q

v (uxdx − uydy) +

∫∫

D

vf dx dy (5.8.13)

which is the solution of the Cauchy problem in terms of the Cauchy data
given along the curve Λ. It is easy to see that the solution at the point
(α, β) depends only on the Cauchy data along the arc QR on Λ. If the
initial data were to change outside this arc QR, the solution would change
only outside the triangle PQR. Thus, from Figure 5.8.2, we can see that
each characteristic separates the region in which the solution remains un-
changed from the region in which it varies. Because of this fact, the unique
continuation of the solution across any characteristic is not possible. This
is evident from Figure 5.8.2. The solution on the right of the characteristic
P1R1 is determined by the initial data given in Q1R2, whereas the solution
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Figure 5.8.2 Solution on the right and left of the characteristic.

on the left is determined by the initial data given on Q1R1. If the initial
data on R1R2 were changed, the solution on the right of P1R1 only will be
affected.

It should be remarked here that the initial curve can intersect each
characteristic at only one point. Suppose, for example, the initial curve Λ
intersects the characteristic at two points, as shown in Figure 5.8.3. Then,
the solution at P obtained from the initial data on QR will be different
from the solution obtained from the initial data on RS. Hence, the Cauchy
problem, in this case, is not solvable.

Figure 5.8.3 Initial curve intersects the characteristic at two points.
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Example 5.8.1. The telegraph equation

wtt + a∗wt + b∗w = c2wxx,

may be transformed into canonical form

L [u] = uξη + ku = 0,

by the successive transformations

w = u e−a∗t/2,

and

ξ = x + ct, η = x − ct,

where k =
(
a∗2 − 4b∗) /16c2.

We apply Riemann’s method to determine the solution satisfying the
initial conditions

u (x, 0) = f (x) , ut (x, 0) = g (x) .

Since

t =
1

2c
(ξ − η) ,

the line t = 0 corresponds to the straight line ξ = η in the ξ − η plane. The
initial conditions may thus be transformed into

[u]ξ=η = f (ξ) , (5.8.14)

[uξ − uη]ξ=η = c−1g (ξ) . (5.8.15)

We next determine the Riemann function v (ξ, η; α, β) which satisfies

vξη + kv = 0, (5.8.16)

vξ (ξ, β; α, β) = 0, (5.8.17)

vη (α, η; α, β) = 0, (5.8.18)

v (α, β; α, β) = 1. (5.8.19)

The differential equation (5.8.16) is self-adjoint, that is,

L [v] = M [v] = vξη + kv.

We assume that the Riemann function is of the form

v (ξ, η; α, β) = F (s) ,

with the argument s = (ξ − α) (η − β). Substituting this value in equation
(5.8.16), we obtain
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sFss + Fs + kF = 0.

If we let λ =
√

4ks, the above equation becomes

F ′′ (λ) +
1

λ
F ′ (λ) + F (λ) = 0.

This is the Bessel equation of order zero, and the solution is

F (λ) = J0 (λ) ,

disregarding Y0 (λ) which is unbounded at λ = 0. Thus, the Riemann func-
tion is

v (ξ, η; α, β) = J0

(√
4k (ξ − α) (η − β)

)

which satisfies equation (5.8.16) and is equal to one on the characteristics
ξ = α and η = β. Since J ′

0 (0) = 0, equations (5.8.17) and (5.8.18) are
satisfied. From this, it immediately follows that

[vξ]ξ=η =

√
k (ξ − β)√

(ξ − α) (η − β)
[J ′

0 (λ)]ξ=η ,

[vη]ξ=η =

√
k (ξ − α)√

(ξ − α) (η − β)
[J ′

0 (λ)]ξ=η .

Thus, we have

[vξ − uη]ξ=η =

√
k (α − β)√

(ξ − α) (ξ − β)
[J ′

0 (λ)]ξ=η . (5.8.20)

From the initial condition

u (Q) = f (β) and u (R) = f (α) , (5.8.21)

and substituting equations (5.8.15), (5.8.19), and (5.8.20) into equation
(5.8.13), we obtain

u (α, β) =
1

2
[f (α) + f (β)]

−1

2

∫ α

β

√
k (α − β)√

(τ − α) (τ − β)
J ′

0

(√
4k (τ − α) (τ − β)

)
f (τ) dτ

+
1

2c

∫ α

β

J0

(√
4k (τ − α) (τ − β)

)
g (τ) dτ. (5.8.22)

Replacing α and β by ξ and η, and substituting the original variables x and
t, we obtain
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u (x, t) =
1

2
[f (x + ct) + f (x − ct)] +

1

2

∫ x+ct

x−ct

G (x, t, τ) dτ, (5.8.23)

where

G (x, t, τ)

=

{
−2

√
k ctf (τ) J0

(√
4k

[
(τ − x)

2 − c2t2
])}/√

(τ − x)
2 − c2t2

+ c−1g (τ) J0

(√
4k

[
(τ − x)

2 − c2t2
])

.

If we set k = 0, we arrive at the d’Alembert solution for the wave equation

u (x, t) =
1

2
[f (x + ct) + f (x − ct)] +

1

2c

∫ x+ct

x−ct

g (τ) dτ.

5.9 Solution of the Goursat Problem

The Goursat problem is that of finding the solution of a linear hyperbolic
equation

uxy = a1 (x, y) ux + a2 (x, y) uy + a3 (x, y) u + h (x, y) , (5.9.1)

satisfying the prescribed conditions

u (x, y) = f (x) , (5.9.2)

on a characteristic, say, y = 0, and

u (x, y) = g (x) (5.9.3)

on a monotonic increasing curve y = y (x) which, for simplicity, is assumed
to intersect the characteristic at the origin.

The solution in the region between the x-axis and the monotonic curve
in the first quadrant can be determined by the method of successive ap-
proximations. The proof is given in Garabedian (1964).

Example 5.9.1. Determine the solution of the Goursat problem

utt = c2uxx, (5.9.4)

u (x, t) = f (x) , on x − ct = 0, (5.9.5)

u (x, t) = g (x) , on t = t (x) , (5.9.6)

where f (0) = g (0).
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The general solution of the wave equation is

u (x, t) = φ (x + ct) + ψ (x − ct) .

Applying the prescribed conditions, we obtain

f (x) = φ (2x) + ψ (0) , (5.9.7)

g (x) = φ (x + c t (x)) + ψ (x − c t (x)) . (5.9.8)

It is evident that

f (0) = φ (0) + ψ (0) = g (0) .

Now, if s = x − c t (x), the inverse of it is x = α (s). Thus, equation (5.9.8)
may be written as

g (α (s)) = φ (x + c t (x)) + ψ (s) . (5.9.9)

Replacing x by (x + c t (x)) /2 in equation (5.9.7), we obtain

f

(
x + c t (x)

2

)
= φ (x + c t (x)) + ψ (0) . (5.9.10)

Thus, using (5.9.10), equation (5.9.9) becomes

ψ (s) = g (α (s)) − f

(
α (s) + c t (α (s))

2

)
+ ψ (0) .

Replacing s by x − ct , we have

ψ (x − ct) = g (α (x − ct)) − f

(
α (x − c t) + c t (α (x − c t))

2

)
+ ψ (0) .

Hence, the solution is given by

u (x, t) = f

(
x + c t

2

)
− f

(
α (x − c t) + c t (α (x − c t))

2

)
+ g (α (x − c t)) .

(5.9.11)

Let us consider a special case when the curve t = t (x) is a straight line
represented by t − kx = 0 with a constant k > 0. Then s = x − ckx and
hence x = s/ (1 − ck). Using these values in (5.9.11), we obtain

u (x, t) = f

(
x + c t

2

)
− f

(
(1 + c k) (x − c t)

2 (1 − c k)

)
+ g

(
x − c t

1 − c k

)
. (5.9.12)

When the values of u are prescribed on both characteristics, the problem
of finding u of a linear hyperbolic equation is called a characteristic initial-
value problem. This is a degenerate case of the Goursat problem.
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Consider the characteristic initial-value problem

uxy = h (x, y) , (5.9.13)

u (x, 0) = f (x) , (5.9.14)

u (0, y) = g (y) , (5.9.15)

where f and g are continuously differentiable, and f (0) = g (0).
Integrating equation (5.9.13), we obtain

u (x, y) =

∫ x

0

∫ y

0

h (ξ, η) dη dξ + φ (x) + ψ (y) , (5.9.16)

where φ and ψ are arbitrary functions. Applying the prescribed conditions
(5.9.14) and (5.9.15), we have

u (x, 0) = φ (x) + ψ (0) = f (x) , (5.9.17)

u (0, y) = φ (0) + ψ (y) = g (y) . (5.9.18)

Thus,

φ (x) + ψ (y) = f (x) + g (y) − φ (0) − ψ (0) . (5.9.19)

But from (5.9.17), we have

φ (0) + ψ (0) = f (0) . (5.9.20)

Hence, from (5.9.16), (5.9.19) and (5.9.20), we obtain

u (x, y) = f (x) + g (y) − f (0) +

∫ x

0

∫ y

0

h (ξ, η) dη dξ. (5.9.21)

Example 5.9.2. Determine the solution of the characteristic initial-value
problem

utt = c2uxx,

u (x, t) = f (x) on x + ct = 0,

u (x, t) = g (x) on x − ct = 0,

where f (0) = g (0).
Here it is not necessary to reduce the given equation to canonical form.

The general solution of the wave equation is

u (x, t) = φ (x + ct) + ψ (x − ct) .

The characteristics are

x + ct = 0, x − ct = 0.
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Applying the prescribed conditions, we have

u (x, t) = φ (2x) + ψ (0) = f (x) on x + ct = 0, (5.9.22)

u (x, t) = φ (0) + ψ (2x) = g (x) on x − ct = 0. (5.9.23)

We observe that these equations are compatible, since f (0) = g (0).
Now, replacing x by (x + ct) /2 in equation (5.9.22) and replacing x by

(x − ct) /2 in equation (5.9.23), we have

φ (x + ct) = f

(
x + ct

2

)
− ψ (0) ,

φ (x − ct) = g

(
x − ct

2

)
− φ (0) .

Hence, the solution is given by

u (x, t) = f

(
x + ct

2

)
+ g

(
x − ct

2

)
− f (0) . (5.9.24)

We note that this solution can be obtained by substituting k = −1/c into
(5.9.12).

Example 5.9.3. Find the solution of the characteristic initial-value problem

y3uxx − yuyy + uy = 0, (5.9.25)

u (x, y) = f (x) on x +
y2

2
= 4 for 2 ≤ x ≤ 4,

u (x, y) = g (x) on x − y2

2
= 0 for 0 ≤ x ≤ 2,

with f (2) = g (2).
Since the equation is hyperbolic except for y = 0, we reduce it to the

canonical form

uξη = 0,

where ξ = x +
(
y2/2

)
and η = x −

(
y2/2

)
. Thus, the general solution is

u (x, y) = φ

(
x +

y2

2

)
+ ψ

(
x − y2

2

)
. (5.9.26)

Applying the prescribed conditions, we have

f (x) = φ (4) + ψ (2x − 4) , (5.9.27)

g (x) = φ (2x) + ψ (0) . (5.9.28)

Now, if we replace (2x − 4) by
(
x − y2/2

)
in (5.9.27) and (2x) by

(
x + y2/2

)

in (5.9.28), we obtain
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5.10 Spherical Wave Equation 153

ψ

(
x − y2

2

)
= f

(
x

2
− y2

4
+ 2

)
− φ (4) ,

φ

(
x +

y2

2

)
= g

(
x

2
+

y2

4

)
− ψ (0) .

Thus,

u (x, y) = f

(
x

2
− y2

4
+ 2

)
+ g

(
x

2
+

y2

4

)
− φ (4) − ψ (0) .

But from (5.9.27) and (5.9.28), we see that

f (2) = φ (4) + ψ (0) = g (2) .

Hence,

u (x, y) = f

(
x

2
− y2

4
+ 2

)
+ g

(
x

2
+

y2

4

)
− f (2) .

5.10 Spherical Wave Equation

In spherical polar coordinates (r, θ, φ), the wave equation (3.1.1) takes the
form

1

r2

∂

∂r

(
r2 ∂u

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

r2 sin2 θ

∂2u

∂φ2
=

1

c2

∂2u

∂t2
.(5.10.1)

Solutions of this equation are called spherical symmetric waves if u
depends on r and t only. Thus, the solution u = u (r, t) which satisfies the
wave equation with spherical symmetry in three-dimensional space is

1

r2

∂

∂r

(
r2 ∂u

∂r

)
=

1

c2

∂2u

∂t2
. (5.10.2)

Introducing a new dependent variable U = ru (r, t), this equation re-
duces to a simple form

Utt = c2Urr. (5.10.3)

This is identical with the one-dimensional wave equation (5.3.1) and has
the general solution in the form

U (r, t) = φ (r + ct) + ψ (r − ct) , (5.10.4)

or, equivalently,

u (r, t) =
1

r
[φ (r + ct) + ψ (r − ct)] . (5.10.5)
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154 5 The Cauchy Problem and Wave Equations

This solution consists of two progressive spherical waves traveling with
constant velocity c. The terms involving φ and ψ represent the incoming
waves to the origin and the outgoing waves from the origin respectively.

Physically, the solution for only outgoing waves generated by a source
is of most interest, and has the form

u (r, t) =
1

r
ψ (r − ct) , (5.10.6)

where the explicit form of ψ is to be determined from the properties of the
source. In the context of fluid flows, u represents the velocity potential so
that the limiting total flux through a sphere of center at the origin and
radius r is

Q (t) = lim
r→0

4πr2ur (r, t) = −4π ψ (−ct) . (5.10.7)

In physical terms, we say that there is a simple (or monopole) point source
of strength Q (t) located at the origin. Thus, the solution (5.10.6) can be
expressed in terms of Q as

u (r, t) = − 1

4πr
Q

(
t − r

c

)
. (5.10.8)

This represents the velocity potential of the point source, and ur is called
the radial velocity. In fluid flows, the difference between the pressure at any
time t and the equilibrium value is given by

p − p0 = ρ ut = − ρ

4πr
Q̇

(
t − r

c

)
, (5.10.9)

where ρ is the density of the fluid.
Following an analysis similar to Section 5.3, the solution of the initial-

value problem with the initial data

u (r, 0) = f (r) , ut (r, 0) = g (r) , r ≥ 0, (5.10.10)

where f and g are continuously differentiable, is given by

u (r, t) =
1

2r

[
(r + ct) f (r + ct) + (r − ct) f (r − ct) +

1

c

∫ r+ct

r−ct

τg (τ) dτ

]
,

(5.10.11)

provided r ≥ ct. However, when r < ct, this solution fails because f and g
are not defined for r < 0. This initial data at t = 0, r ≥ 0 determine the
solution u (r, t) only up to the characteristic r = ct in the r-t plane. To find
u for r < ct, we require u to be finite at r = 0 for all t ≥ 0, that is, U = 0
at r = 0. Thus, the solution for U (r, t) is
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U (r, t) =
1

2

[
(r + ct) f (r + ct) + (r − ct) f (r − ct) +

1

c

∫ r+ct

r−ct

τg (τ) dτ

]
,

(5.10.12)

provided r ≥ ct ≥ 0, and

U (r, t) =
1

2
[φ (ct + r) + ψ (ct − r)] , ct ≥ r ≥ 0, (5.10.13)

where

φ (ct) + ψ (ct) = 0, for ct ≥ 0. (5.10.14)

In view of the fact that Ur + 1
c Ut is constant on each characteristic

r + ct = constant, it turns out that

φ′ (ct + r) = (r + ct) f ′ (r + ct) + f (r + ct) +
1

c
(r + ct) g (r + ct) ,

or

φ′ (ct) = ctf ′ (ct) + f (ct) + t g (ct) .

Integration gives

φ (t) = tf (t) +
1

c

∫ t

0

τg (τ) dτ + φ (0) ,

so that

ψ (t) = −tf (t) − 1

c

∫ t

0

τg (τ) dτ − φ (0) .

Substituting these values into (5.10.13) and using U (r, t) = ru (r, t), we
obtain, for ct > r,

u (r, t) =
1

2r

[
(ct + r) f (ct + r) − (ct − r) f (ct − r) +

1

c

∫ ct+r

ct−r

τg (τ) dτ

]
.

(5.10.15)

5.11 Cylindrical Wave Equation

In cylindrical polar coordinates (R, θ, z), the wave equation (3.1.1) assumes
the form

uRR +
1

R
uR +

1

R2
uθθ + uzz =

1

c2
utt. (5.11.1)

If u depends only on R and t, this equation becomes
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uRR +
1

R
uR =

1

c2
utt. (5.11.2)

Solutions of (5.11.2) are called cylindrical waves.
In general, it is not easy to find the solution of (5.11.1). However, we

shall solve this equation by using the method of separation of variables in
Chapter 7. Here we derive the solution for outgoing cylindrical waves from
the spherical wave solution (5.10.8). We assume that sources of constant
strength Q (t) per unit length are distributed uniformly on the z-axis. The
solution for the cylindrical waves produced by the line source is given by
the total disturbance

u (R, t) = − 1

4π

∫ ∞

−∞

1

r
Q

(
t − r

c

)
dz = − 1

2π

∫ ∞

0

1

r
Q

(
t − r

c

)
dz, (5.11.3)

where R is the distance from the z-axis so that R2 =
(
r2 − z2

)
.

Substitution of z = R sinh ξ and r = R cosh ξ in (5.11.3) gives

u (R, t) = − 1

2π

∫ ∞

0

Q

(
t − R

c
cosh ξ

)
dξ. (5.11.4)

This is usually considered as the cylindrical wave function due to a source
of strength Q (t) at R = 0. It follows from (5.11.4) that

utt = − 1

2π

∫ ∞

0

Q′′
(

t − R

c
cosh ξ

)
dξ, (5.11.5)

uR =
1

2πc

∫ ∞

0

cosh ξ Q′
(

t − R

c
cosh ξ

)
dξ, (5.11.6)

uRR = − 1

2πc2

∫ ∞

0

cosh2 ξ Q′′
(

t − R

c
cosh ξ

)
dξ, (5.11.7)

which give

c2

(
uRR +

1

R
uR

)
− utt =

1

2π

∫ ∞

0

d

dξ

[
c

R
Q′

(
t − R

c
cosh ξ

)
sinh ξ

]
dξ

= lim
ξ→∞

[
c

2πR
Q′

(
t − R

c
cosh ξ

)
sinh ξ

]
= 0,

provided the differentiation under the sign of integration is justified and the
above limit is zero. This means that u (R, t) satisfies the cylindrical wave
equation (5.11.2).

In order to find the asymptotic behavior of the solution as R → 0, we

substitute cosh ξ = c(t−ζ)
R into (5.11.4) and (5.11.6) to obtain

u = − 1

2π

∫ t−R/c

−∞

Q (ζ) dζ
[
(t − ζ)

2 − R2

c2

] 1
2

, (5.11.8)

uR =
1

2π

∫ t−R/c

−∞

(
t − ζ

R

)
Q′ (ζ) dζ

[
(t − ζ)

2 − R2

c2

] 1
2

, (5.11.9)
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which, in the limit R → 0, give

uR ∼ 1

2πR

∫ t

−∞
Q′ (ζ) dζ =

1

2πR
Q (t) . (5.11.10)

This leads to the result

lim
R→0

2πR uR = Q (t) , (5.11.11)

or

u (R, t) ∼ 1

2π
Q (t) log R as R → 0. (5.11.12)

We next investigate the nature of the cylindrical wave solution near the
waterfront (R = ct) and in the far field (R → ∞). We assume Q (t) = 0 for
t < 0 so that the lower limit of integration in (5.11.8) may be taken to be
zero, and the solution is non-zero for τ = t − R

c > 0, where τ is the time
passed after the arrival of the wavefront. Consequently, (5.11.8) becomes

u (R, t) = − 1

2π

∫ τ

0

Q (ζ) dζ
[
(t − ζ)

(
t − ζ + 2R

c

)] 1
2

. (5.11.13)

Since 0 < ζ < τ , 2R
c > R

c > τ > τ − ζ > 0, so that the second factor under

the radical is approximately equal to 2R
c when R ≫ cτ , and hence,

u (R, t) ∼ − 1

2π

( c

2R

) 1
2

∫ τ

0

Q (ζ) dζ

(t − ζ)
1
2

= −
( c

2R

) 1
2

q (τ)

= −
( c

2R

) 1
2

q

(
t − R

c

)
, R ≫ ct

2
, (5.11.14)

where

q (τ) =
1

2π

∫ τ

0

Q (ζ) dζ√
τ − ζ

. (5.11.15)

Evidently, the amplitude involved in the solution (5.11.14) decays like

R− 1
2 for large R (R → ∞).

Example 5.11.1. Determine the asymptotic form of the solution (5.11.4) for
a harmonically oscillating source of frequency ω.

We take the source in the form Q (t) = q0 exp [−i (ω + iε) t], where ε is
positive and small so that Q (t) → 0 as t → −∞. The small imaginary part
ε of ω will make insignificant contributions to the solution at finite time as
ε → 0. Thus, the solution (5.11.4) becomes

u (R, t) = −
( q0

2π

)
e−iωt

∫ ∞

0

exp

(
iωR

c
cosh ξ

)
dξ

= −
(

iq0

4

)
e−iωtH

(1)
0

(
ωR

c

)
, (5.11.16)
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where H
(1)
0 (z) is the Hankel function given by

H
(1)
0 (z) =

2

πi

∫ ∞

0

exp (iz cosh ξ) dξ. (5.11.17)

In view of the asymptotic expansion of H
(1)
0 (z) in the form

H
(1)
0 (z) ∼

(
2

πz

) 1
2

exp
[
i
(
z − π

4

)]
, z → ∞, (5.11.18)

the asymptotic solution for u (R, t) in the limit
(

ωR
c

)
→ ∞ is

u (R, t) ∼ −
(

iq0

4

)(
2c

πωR

) 1
2

exp

[
−i

(
ωt − ωR

c
− π

4

)]
.

This represents the cylindrical wave propagating with constant velocity c.
The amplitude of the wave decays like R− 1

2 as R → ∞.

Example 5.11.2. For a supersonic flow (M > 1) past a solid body of revo-
lution, the perturbation potential Φ satisfies the cylindrical wave equation

ΦRR +
1

R
ΦR = N2Φxx, N2 = M2 − 1,

where R is the distance from the path of the moving body and x is the
distance from the nose of the body.

It follows from problem 12 in 3.9 Exercises that Φ satisfies the equation

Φyy + Φzz = N2 Φxx.

This represents a two-dimensional wave equation with x ↔ t and N2 ↔
1
c2 . For a body of revolution with (y, z) ↔ (R, θ), ∂

∂θ ≡ 0, the above equation
reduces to the cylindrical wave equation

ΦRR +
1

R
ΦR =

1

c2
Φtt.

5.12 Exercises

1. Determine the solution of each of the following initial-value problems:

(a) utt − c2uxx = 0, u (x, 0) = 0, ut (x, 0) = 1.

(b) utt − c2uxx = 0, u (x, 0) = sinx, ut (x, 0) = x2.

(c) utt − c2uxx = 0, u (x, 0) = x3, ut (x, 0) = x.
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(d) utt − c2uxx = 0, u (x, 0) = cos x, ut (x, 0) = e−1.

(e) utt − c2uxx = 0, u (x, 0) = log
(
1 + x2

)
, ut (x, 0) = 2.

(f) utt − c2uxx = 0, u (x, 0) = x, ut (x, 0) = sinx.

2. Determine the solution of each of the following initial-value problems:

(a) utt − c2uxx = x, u (x, 0) = 0, ut (x, 0) = 3.

(b) utt − c2uxx = x + ct, u (x, 0) = x, ut (x, 0) = sinx.

(c) utt − c2uxx = ex, u (x, 0) = 5, ut (x, 0) = x2.

(d) utt − c2uxx = sinx, u (x, 0) = cos x, ut (x, 0) = 1 + x.

(e) utt − c2uxx = xet, u (x, 0) = sinx, ut (x, 0) = 0.

(f) utt − c2uxx = 2, u (x, 0) = x2, ut (x, 0) = cos x.

3. A gas which is contained in a sphere of radius R is at rest initially, and
the initial condensation is given by s0 inside the sphere and zero outside
the sphere. The condensation is related to the velocity potential by

s (t) =
(
1/c2

)
ut,

at all times, and the velocity potential satisfies the wave equation

utt = ∇2u.

Determine the condensation s (t) for all t > 0.

4. Solve the initial-value problem

uxx + 2uxy − 3uyy = 0,

u (x, 0) = sinx, uy (x, 0) = x.

5. Find the longitudinal oscillation of a rod subject to the initial conditions

u (x, 0) = sinx,

ut (x, 0) = x.

6. By using the Riemann method, solve the following problems:

(a) sin2 µ φxx − cos2 µ φyy −
(
λ2 sin2 µ cos2 µ

)
φ = 0,

φ (0, y) = f1 (y) , φ (x, 0) = g1 (x) ,

φx (0, y) = f2 (y) , φy (x, 0) = g2 (x) .
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(b) x2uxx − t2utt = 0,

u (x, t1) = f (x) , ut (x, t2) = g (x) .

7. Determine the solution of the initial boundary-value problem

utt = 4uxx, 0 < x < ∞, t > 0,

u (x, 0) = x4, 0 ≤ x < ∞,

ut (x, 0) = 0, 0 ≤ x < ∞,

u (0, t) = 0, t ≥ 0.

8. Determine the solution of the initial boundary-value problem

utt = 9uxx, 0 < x < ∞, t > 0,

u (x, 0) = 0, 0 ≤ x < ∞,

ut (x, 0) = x3, 0 ≤ x < ∞,

ux (0, t) = 0, t ≥ 0.

9. Determine the solution of the initial boundary-value problem

utt = 16uxx, 0 < x < ∞, t > 0,

u (x, 0) = sinx, 0 ≤ x < ∞,

ut (x, 0) = x2, 0 ≤ x < ∞,

u (0, t) = 0, t ≥ 0.

10. In the initial boundary-value problem

utt = c2uxx, 0 < x < l, t > 0,

u (x, 0) = f (x) , 0 ≤ x ≤ l,

ut (x, 0) = g (x) , 0 ≤ x ≤ l,

u (0, t) = 0, t ≥ 0,

if f and g are extended as odd functions, show that u (x, t) is given by
the solution (5.4.5) for x > ct and solution (5.4.6) for x < ct.

11. In the initial boundary-value problem

utt = c2uxx, 0 < x < l, t > 0,

u (x, 0) = f (x) , 0 ≤ x ≤ l,

ut (x, 0) = g (x) , 0 ≤ x ≤ l,

ux (0, t) = 0, t ≥ 0,

if f and g are extended as even functions, show that u (x, t) is given by
solution (5.4.8) for x > ct, and solution (5.4.9) for x < ct.
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12. Determine the solution of the initial boundary-value problem

utt = c2uxx, 0 < x < ∞, t > 0,

u (x, 0) = f (x) , 0 ≤ x < ∞,

ut (x, 0) = 0, 0 ≤ x < ∞,

ux (0, t) + hu (0, t) = 0, t ≥ 0, h = constant.

State the compatibility condition of f .

13. Find the solution of the problem

utt = c2uxx, at < x < ∞, t > 0,

u (x, 0) = f (x) , 0 < x < ∞,

ut (x, 0) = 0, 0 < x < ∞,

u (at, t) = 0, t > 0,

where f (0) = 0 and a is constant.

14. Find the solution of the initial boundary-value problem

utt = uxx, 0 < x < 2, t > 0,

u (x, 0) = sin (πx/2) , 0 ≤ x ≤ 2,

ut (x, 0) = 0, 0 ≤ x ≤ 2,

u (0, t) = 0, u (2, t) = 0, t ≥ 0.

15. Find the solution of the initial boundary-value problem

utt = 4uxx, 0 < x < 1, t > 0,

u (x, 0) = 0, 0 ≤ x ≤ 1,

ut (x, 0) = x (1 − x) , 0 ≤ x ≤ 1,

u (0, t) = 0, u (1, t) = 0, t ≥ 0.

16. Determine the solution of the initial boundary-value problem

utt = c2uxx, 0 < x < l, t > 0,

u (x, 0) = f (x) , 0 ≤ x ≤ l,

ut (x, 0) = g (x) , 0 ≤ x ≤ l,

ux (0, t) = 0, ux (l, t) = 0, t ≥ 0,

by extending f and g as even functions about x = 0 and x = l.

17. Determine the solution of the initial boundary-value problem

utt = c2uxx, 0 < x < l, t > 0,

u (x, 0) = f (x) , 0 ≤ x ≤ l,

ut (x, 0) = g (x) , 0 ≤ x ≤ l,

u (0, t) = p (t) , u (l, t) = q (t) , t ≥ 0.
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18. Determine the solution of the initial boundary-value problem

utt = c2uxx, 0 < x < l, t > 0,

u (x, 0) = f (x) , 0 ≤ x ≤ l,

ut (x, 0) = g (x) , 0 ≤ x ≤ l,

ux (0, t) = p (t) , ux (l, t) = q (t) , t ≥ 0.

19. Solve the characteristic initial-value problem

xy3uxx − x3y uyy − y3ux + x3uy = 0,

u (x, y) = f (x) on y2 − x2 = 8 for 0 ≤ x ≤ 2,

u (x, y) = g (x) on y2 + x2 = 16 for 2 ≤ x ≤ 4,

with f (2) = g (2).

20. Solve the Goursat problem

xy3uxx − x3y uyy − y3ux + x3uy = 0,

u (x, y) = f (x) on y2 + x2 = 16 for 0 ≤ x ≤ 4,

u (x, y) = g (y) on x = 0 for 0 ≤ y ≤ 4,

where f (0) = g (4).

21. Solve

utt = c2uxx,

u (x, t) = f (x) on t = t (x) ,

u (x, t) = g (x) on x + ct = 0,

where f (0) = g (0).

22. Solve the characteristic initial-value problem

xuxx − x3uyy − ux = 0, x �= 0,

u (x, y) = f (y) on y − x2

2
= 0 for 0 ≤ y ≤ 2,

u (x, y) = g (y) on y +
x2

2
= 4 for 2 ≤ y ≤ 4,

where f (2) = g (2).

23. Solve

uxx + 10uxy + 9uyy = 0,

u (x, 0) = f (x) ,

uy (x, 0) = g (x) .
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24. Solve

4 uxx + 5uxy + uyy + ux + uy = 2,

u (x, 0) = f (x) ,

uy (x, 0) = g (x) .

25. Solve

3 uxx + 10uxy + 3uyy = 0,

u (x, 0) = f (x) , uy (x, 0) = g (x) .

26. Solve

uxx − 3 uxy + 2uyy = 0,

u (x, 0) = f (x) , uy (x, 0) = g (x) .

27. Solve

x2uxx − t2utt = 0 x > 0, t > 0,

u (x, 1) = f (x) ,

ut (x, 1) = g (x) .

28. Consider the initial boundary-value problem for a string of length l
under the action of an external force q (x, t) per unit length. The dis-
placement u (x, t) satisfies the wave equation

ρ utt = Tuxx + ρ q (x, t) ,

where ρ is the line density of the string and T is the constant tension
of the string. The initial and boundary conditions of the problem are

u (x, 0) = f (x) , ut (x, 0) = g (x) , 0 ≤ x ≤ l,

u (0, t) = u (l, t) = 0, t > 0.

Show that the energy equation is

dE

dt
= [Tuxut]

l
0 +

∫ l

0

ρ q ut dx,

where E represents the energy integral

E (t) =
1

2

∫ l

0

(
ρ u2

t + Tu2
x

)
dx.

Explain the physical significance of the energy equation.

Hence or otherwise, derive the principle of conservation of energy, that
is, that the total energy is constant for all t ≥ 0 provided that the string
has free or fixed ends and there are no external forces.
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29. Show that the solution of the signaling problem governed by the wave
equation

utt = c2uxx, x > 0, t > 0,

u (x, 0) = ut (x, 0) = 0, x > 0,

u (0, t) = U (t) , t > 0,

is

u (x, t) = U
(
t − x

c

)
H

(
t − x

c

)
,

where H is the Heaviside unit step function.

30. Obtain the solution of the initial-value problem of the homogeneous
wave equation

utt − c2uxx = sin (kx − ωt) , −∞ < x < ∞, t > 0,

u (x, 0) = 0 = ut (x, 0) , for all x ∈ R,

where c, k and ω are constants.

Discuss the non-resonance case, ω �= ck and the resonance case, ω = ck.

31. In each of the following Cauchy problems, obtain the solution of the
system

utt − c2uxx = 0, x ∈ R, t > 0,

u (x, 0) = f (x) and ut (x, 0) = g (x) for x ∈ R,

for the given c, f (x) and g (x):

(a) c = 3, f (x) = cos x, g (x) = sin 2x.

(b) c = 1, f (x) = sin 3x, g (x) = cos 3x.

(c) c = 7, f (x) = cos 3x, g (x) = x.

(d) c = 2, f (x) = cosh x, g (x) = 2x.

(e) c = 3, f (x) = x3, g (x) = x cos x.

(f) c = 4, f (x) = cos x, g (x) = xe−x.

32. If u (x, t) is the solution of the nonhomogeneous Cauchy problem

utt − c2uxx = p (x, t) , for x ∈ R, t > 0,

u (x, 0) = 0 = ut (x, 0) , for x ∈ R,
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and if v (x, t, τ) is the solution of the nonhomogeneous Cauchy problem

vtt − c2vxx = 0, for x ∈ R, t > 0,

v (x, 0; τ) = 0, vt (x, 0; τ) = p (x, τ) , x ∈ R,

show that

u (x, t) =

∫ t

0

v (x, t; τ) dτ.

This is known as the Duhamel principle for the wave equation.

33. Show that the solution of the nonhomogeneous diffusion equation with
homogeneous boundary and initial data

ut = κuxx + p (x, t) , 0 < x < l, t > 0,

u (0, t) = 0 = u (l, t) , t > 0,

u (x, 0) = 0, 0 < x < l,

is

u (x, t) =

∫ t

0

v (x, t; τ) dτ,

where v = v (x, t; τ) satisfies the homogeneous diffusion equation with
nonhomogeneous boundary and initial data

vtt = κvxx + p (x, t) , 0 < x < l, t > 0,

v (0, t; τ) = 0 = v (l, t; τ) , t > 0,

v (x, τ ; τ) = p (x, τ) .

This is known as the Duhamel principle for the diffusion equation.

34. Use the Duhamel principle to solve the nonhomogeneous diffusion equa-
tion

ut = κuxx + e−t sin πx, 0 < x < l, t > 0,

with the homogeneous boundary and initial data

u (0, t) = 0, u (1, t) = 0, t > 0,

u (x, 0) = 0, 0 ≤ x ≤ 1.

35. (a) Verify that

un (x, y) = exp
(
ny −

√
n
)
sin nx,

is the solution of the Laplace equation
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uxx + uyy = 0, x ∈ R, y > 0,

u (x, 0) = 0, uy (x, 0) = n exp
(
−

√
n
)
sin nx,

where n is a positive integer.
(b) Show that this Cauchy problem is not well posed.

36. Show that the following Cauchy problems are not well posed:

(a) ut = uxx, x ∈ R, t > 0,

u (0, t) =
(

2
n

)
sin

(
2n2t

)
, ux (0, t) = 0, t > 0.

(b) uxx + uyy = 0, x ∈ R, t > 0,

un (x, 0) → 0, (un)y (x, 0) → 0, as n → ∞.




